
ALUMINUM ELECTROLYTIC CAPACITORS · RADIAL TYPE

CD 269 PH SERIES

4 000 at 125°C

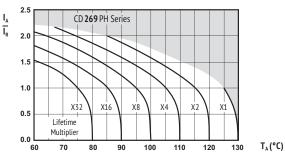
- · High Reliability at High Temperature
- $\cdot \ \mathsf{Automotive}$
- · Professional Long-Life Applications

ITEM **CHARACTERISTICS**

Operating Temperature Range (°C)	-40 ~ +125
Voltage Range (V)	10 ~ 63
Capacitance Range (µF)	47 ~ 3 300
Capacitance Tolerance (20°C, 120Hz)	± 20%

than indicated may be possible. Please contact the Jianghai Europe sales office for approval.

Leakage Current (µA) After 2 minutes at 20°C application of rated voltage, leakage current is not more than specified in table.


ITEM	USEFUL LIFE		LOAD LIFE	ENDURANCE TEST	SHELF LIFE			
Lifetime	4 000h	> 200 000h	2 000h	3 000h	1 00	0h		
Leakage Current	Not more than s	pecified value	Not more than specified value	Not more than specified value	Not more than specified value			
Capacitance Change	Within ± 50% o	f initial value	Within ± 30% of initial value	Within ± 30% of initial value	Within ± 30% of initial value			
Dissipation Factor	Not more than 500%	of specified value	Not more than 300% of specified value	Not more than 300% of specified value	Not more than 300%	of specified value		
Condition: Applied Voltage Applied Current Applied Temperature	U _R I _R 125°C	U _R 1,4 x I _R 50°C	U _R I _R 125°C	U _R I _R = 0 125°C IEC 60384	U _R = 0 I _R = 0 125°C	After test: U _R to be applied for 30 min > 24h before measurement		

MULTIPLIER FOR RIPPLE CURRENT (FREQUENCY COEFFICIENT)

Capa- Frequency citance (µF)	120Hz	1kHz	10kHz	100kHz
47 ~ 100	0,40	0,75	0,90	1,00
220 ~ 330	0,50	0,85	0,95	1,00
470 ~ 1 000	0,60	0,88	0,96	1,00
2 200 ~ 3 300	0,75	0,90	0,98	1,00

Multipliers for typical operating conditions.

MULTIPLIER FOR LIFETIME (LIFETIME DIAGRAM)

I = actual ripple current at 100kHz,

I = rated ripple current at 100kHz, 125°C

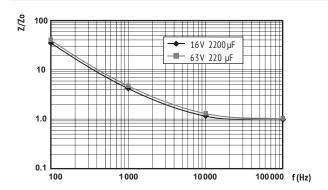
Multiplier of Useful Life as a function of ambient temperature & ripple current load

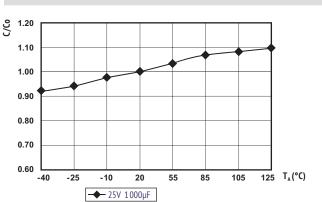
ENVIRONMENTAL

v2022.1

The products are RoHS, WEEE and REACh compliant. The detailed version please see seperate "Environmental Certificates" document or www.jianghai-europe.com

SAFETY FACTOR


This diagram includes a safety margin. In many cases the allowed current $% \left(1\right) =\left(1\right) \left(1\right) \left$ capability/lifetime may be increased. For details and approvals please contact the Jianghai Europe sales office.


U _{rdc}	$C_{_{R}}$	ESR _{max}	Z _{max}	Z _{max}	tan6	leak	I _{RAC}	Size	ORDER CODE
(Surge Voltage)	Rated Capacitance	Equivalent Series Resistance	Max Impedance	Max Impedance	Dissipation Factor	Leakage Current	Rated Ripple Current	øD x L	◊◊ = pin style & length
Code		20°C 120Hz	20°C 100kHz	-10°C 100kHz	20°C 120Hz		125°C 100kHz		∆∆ = pitch code
(V)	(μF)	(Ω)	(Ω)	(Ω)		(μΑ)	(mArms)	(mm)	Details: Page 4
10	330	0,80	0,33	0,66	0,20	132	340	8 x 11,5	ECR1APH331M♦♦∆∆0811
(13)	470	0,57	0,24	0,48	0,20	188	500	10 x 12,5	ECR1APH471M♦♦△△1012
1A	1 000	0,27	0,12	0,24	0,20	400	770	10 x 20	ECR1APH102M♦♦△△1020
	2 200	0,14	0,061	0,13	0,22	880	1250	12,5 x 25	ECR1APH222M♦♦△△1225
	3 300	0,10	0,050	0,10	0,24	1320	1380	16 x 25	ECR1APH332M◊◊ΔΔ1625
	220	0,97	0,33	0,66	0,16	141	340	8 x 11,5	ECR1CPH221M◊◊ΔΔ0811
16 (20)	330	0,65	0,33	0,48	0,16	212	500	10 x 12,5	ECR1CPH331M◊◊ΔΔ1012
1C	470	0,46	0,24	0,40	0,16	301	630	10 x 12,5	ECR1CPH471M◊◊ΔΔ1016
	1 000	0,46	0,20	0,40	0,16	640	920	10 x 16 12,5 x 20	ECR1CPH102M◊◊ΔΔ1016
						1408		16 x 25	
	2 200	0,11	0,050	0,10	0,18	1408	1380	16 X 25	ECR1CPH222M°◊ΔΔ1625
25	220	0,85	0,23	0,46	0,14	220	480	8 x 16	ECR1EPH221M♦♦∆∆0816
(32)	330	0,57	0,20	0,40	0,14	330	630	10 x 16	ECR1EPH331M◊◊△△1016
1E	470	0,40	0,12	0,24	0,14	470	770	10 x 20	ECR1EPH471M♦♦△△1020
	1 000	0,19	0,061	0,13	0,14	1000	1250	12,5 x 25	ECR1EPH102M♦♦△△1225
35	100	1,60	0,33	0,66	0,12	140	340	8 x 11,5	ECR1VPH101M◊◊Δ∆0811
(44)	220	0,73	0,20	0,40	0,12	308	630	10 x 16	ECR1VPH221M◊◊ΔΔ1016
17	330	0,49	0,12	0,40	0,12	462	770	10 x 20	ECR1VPH331M◊◊ΔΔ1020
	470	0,34	0,12	0,16	0,12	658	920	12,5 x 20	ECR1VPH471M◊◊ΔΔ1220
	1 000	0,16	0,077	0,10	0,12	1400	1380	16 x 25	ECR1VPH102M◊◊ΔΔ1625
	1 000	0,10	0,030	0,10	0,12	1400	1300	10 X 23	LCKIVI III OZPIVVAA 1025
50	100	1,33	0,36	0,72	0,10	200	420	10 x 12,5	ECR1HPH101M♦♦△△1012
(63)	220	0,61	0,20	0,40	0,10	440	655	10 x 20	ECR1HPH221M♦♦△△1020
1H	330	0,41	0,12	0,24	0,10	660	780	12,5 x 20	ECR1HPH331M◊◊Δ△1220
	470	0,29	0,10	0,20	0,10	940	1060	12,5 x 25	ECR1HPH471M♦♦△△1225
		*	, , , , , , , , , , , , , , , , , , ,		,	1		,	-
63	47	2,55	0,68	2,10	0,09	119	245	8 x 11,5	ECR1JPH470M♦♦△△0811
(79)	100	1,20	0,38	1,20	0,09	252	425	10 x 16	ECR1JPH101M♦♦△△1016
1J	220	0,55	0,18	0,54	0,09	555	665	12,5 x 20	ECR1JPH221M♦♦△△1220
	330	0,37	0,14	0,42	0,09	832	900	12,5 x 25	ECR1JPH331M◊◊ΔΔ1225

IMPEDANCE RATIO

Z = actual impedance of each frequency at 20°C, Zo = Impedance at 100kHz, 20°C Impedance Ratio as a function of frequency

CAPACITANCE RATIO

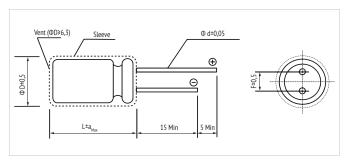
C = actual capacitance of each temperature at 100Hz, Co = Capacitance at 20°C, 100Hz Capacitance Ratio as a function of temperature (typical curve)

- ENGINEERED SOLUTIONS

RADIAL TYPE: ORDER CODE \prod

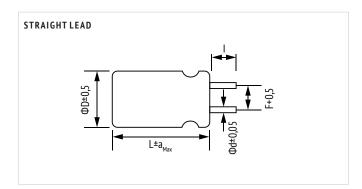
ORDER CODE FOR RADIAL CAPACITORS

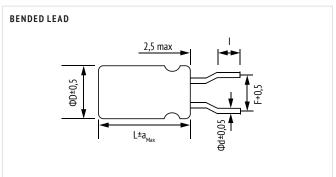
EC	R	2	G	QΧ		22	1	М		LL		50		10	12	•		-	JEx	хххх
Techno- logy	Terminal Type	Rat Volta Con	age	Series Code		Capaci ¹		Capacitan Toleranc		Terminal Style	l	Termina Pitch			nsion m)	Materi Code		Rubbe Type	r Spe	or ecials nly
EC	Radial R	6,3V	0J	CD 110	PT	0,1	0R1	±20%	М	Taped	FF	2,0mm	20	4x7	0407	Standard	-	Standard	-	
Electrolytric Capacitor		10V	1A	CD 11GL	GL	0,47	R47	±10%	K	Long Lead	LL	2,5mm	25	5x11,5	0511	PVC	٧	Flat Rubber	F	
		16V	10	CD 261	LK	1,0	010	+30 / -10%	Q	Cut 5,0mm	СВ	3,5mm	35	10x20	1020	PET	Е	Stand-Off	S	
		20V	1D	CD 261L	DE	2,2	2R2	+20 / -0%	R	Cut 4,5mm	СС	5,0mm	50	12,5x25	1225					
		25V	1E	CD 261X	QX	100	101	±15%	L	Cut 4,0mm	CD	7,5 mm	75							
		35V	1V	CD 263	ВК	1 000	102	+20 / -10%	٧	Cut 3,5mm	CE	10,0mm	10							
		40V	1G	CD 269	РН	10 000	103	= preferre	ed	Cut 3,0mm	CF	12,5mm	12							
		50V	1H	CD 269L	HL															
		63V	1J	CD 281	LL															
		80V	1K	CD 281L	LH															
		100V	2A	CD 282L	YL															
		125V	2B	CD 282X	EQ															
		160V	2C	CD 284	XY															
		180V	2K	CD 284L	LY															
		200V	2D	CD 285	HY															
		250V	2E	CD 287	GC															
		350V	2 V	CD 28L	QL															
		385V																		
		400V								On requ	est.									
		415V								Alternat		and for	mc							
		420V												اعم لدمل	\					
		450V								(keyed p	otar	ity, 90°	ben	aea, otr	iers)					
		500V																		
		550V								Packagir	ng:									
		575V								Taped: a	iped: ammopack									
		600V								Long lea	ıd &	cut: bu	lk							
		630V	J2																	



DIMENSIONS FOR LOOSE, LONG-LEAD TYPE (BULK)

· ORDER CODE: LL

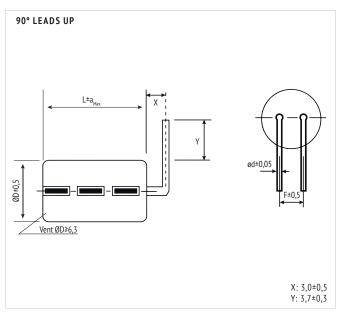

L			L ≤ 7				L≥11											
Ø D	3	4	5	6,3	8	5	6,3	8	10	12,5	16	18	20	0 22		25		
F	1,0	1,5	2,0	2,5	3,5	2,0	2,5	3,5	5,0		7,5		7,5		10,0			
Ød	0,4 0,45						,5	0,6				0,8	1,0			,0		
a _{Max}			1,0						2,0				2,5					


For diameter 20 pitch 7,5 or 10.

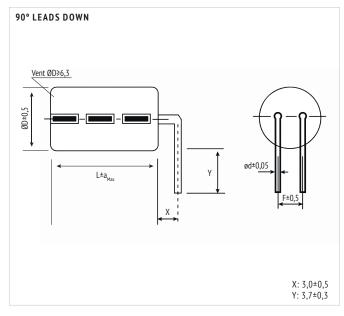
in mm

DIMENSIONS FOR LOOSE, SHORT CUT LEADS (BULK)

· ORDER CODE: CC (CB, CD, CE, CF)


Code	СВ	СС	CD	CE	CF
1	5,0 ± 0,5	4,5 ± 0,5	4,0 ± 0,5	3,5 ± 0,5	3,0 ± 0,5

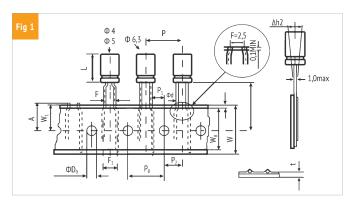
= preferred

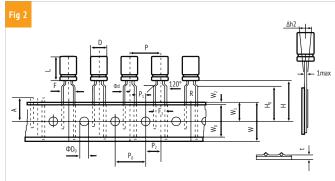

in mm

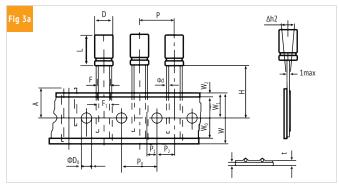
EXAMPLE OF ALTERNATIVE BENDINGS

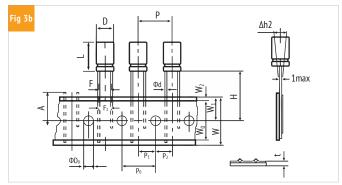
· ORDER CODE: WS

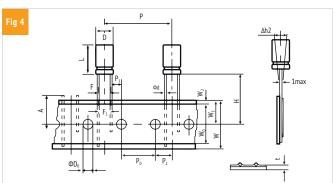
· ORDER CODE: WX



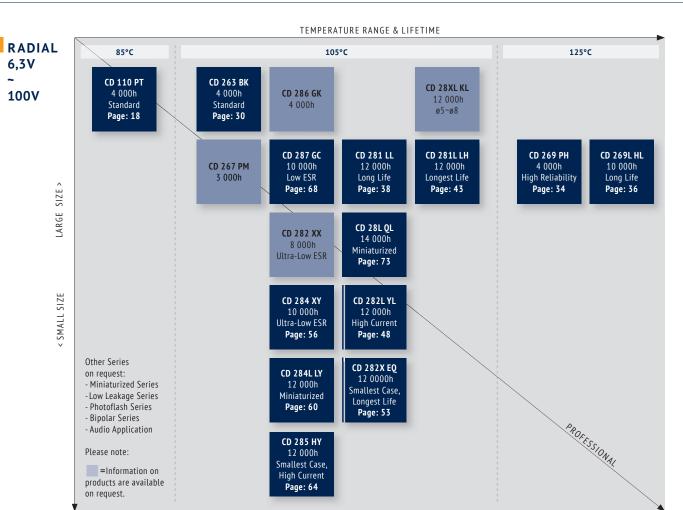


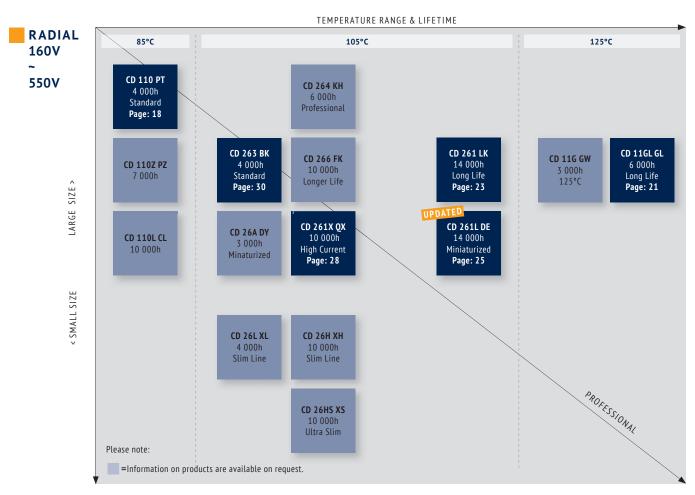



DIMENSIONS FOR AMMOPACK TAPING FOR ELECTROLYTIC CAPACITORS


· ORDER CODE: FF (FD)

OTHER TAPING STYLES AVAILABLE ON REQUEST.


ITEM	D	L	Ød	P	P ₀	P ₁	P ₂	F	F ₁	W	W _o	W ₁	W ₂	Н	H _o	Α	ØD ₀	Δh ₂	t		Taping
Tol.	± 0,5	± 2,0	± 0,05	± 1,0	± 0,2	± 0,5	± 1,0	+ 0,8 - 0,2	± 1,0	± 0,5	min	± 0,5	max	+ 0,75 - 0,5	± 0,5	max	± 0,5	max	± 0,2	Fig.	Code
	4	7	0,45	12,7	12,7	5,1	6,35	2,5	3,5	18,0	10,0	9,0	1,5	18,5	-	11,0	4,0	1,0	0,7	1	FF
	7	,	0,43	12,7	12,7	3,85	0,33	5	5	10,0	10,0	9,0	1,5	17,5	16,0	11,0	4,0	1,0	0,7	2	FF
		7	0,45	12,7	12,7	5,1	6,35	2,5	3,5	18,0	10,0	9,0	1,5	18,5	-	11,0	4,0	1,0	0,7	1	FF
	5	,	0,73	12,7	12,7	3,85	0,55	5	5	10,0	10,0	7,0	1,5	17,5	16,0	11,0	7,0	1,0	0,7	2	FF
	,	51	6,35	2,5	3,5	3,5	10,0	9,0	1,5	18,5	-	11,0	4,0	1,0	0,7	1	FF				
		11,5 15	0,5	12,7	12,7	3,85	0,55	5	5	10,0	10,0	,,0	1,5	10,5	16,0	11,0	1,0	1,0	0,7	2	FF
		7	0,45	12,7	12,7	5,1	6,35	2,5	3,5	18,0	10,0	9,0	1,5	18,5	-	11,0	4,0	1,0	0,7	1	FF
	6,3	,	0,13	12,7	,-	3,85	0,55	5	5	20,0	10,0	7,0	1,5	17,5	16,0	11,0	1,0	1,0		2	FF
=	0,3	11,5~15	0,5	12,7	12,7	5,1	6,35	2,5	3,5	18,0	10,0	9,0	1,5	18,5	-	11,0	4,0	1,0	0,7	1	FF
Nominal		11,3 13	-,-	,-	,-	3,85	0,33	5	5	.,.		,,,	-,5		16,0	,0	.,0	-,0	0,,	2	FF
운	8	11,5~20	0,6	12,7	12,7	4,6	6,35		3,5	18,0	10,0	9,0	1,5	18,5	-	11,0	4,0	1,0	0,7	3a	FF
		,	-,-			3,85	-,	5	5	,-	,-	-,-	_,-	20,0	16,0	,-	-,-	2,0	-,-	2	FF
	10	12,5~36	0,6	12,7	12,7	3,85	6,35	5	5	18,0	10,0	9,0	1,5	18,5	-	11,0	4,0	1,0	0,7	3b	FF
	42.5	45.77	0.6	15	15	5,0	7,5	-	-	400	42.0	0.0	4.5	40.5		44.0	4.0	4.0	0.7	3b	FF
	12,5	15~36	0,6	25,4	12,7	3,85	6,35	5	5	18,0	12,0	9,0	1,5	18,5	-	11,0	4,0	1,0	0,7	4	FD
	16	15~31,5	0,8	30	15	3,75	7,5	7,5	7,5	18,0	12,0	9,0	1,5	18,5	-	11,0	4,0	1,0	0,7	4	FD
	18	15~25,5	0,8	30	15	3,75	7,5	7,5	7,5	18,0	12,0	9,0	1,5	18,5	-	11,0	4,0	1,0	0,7	4	FD
	Other	taping sty	les avail	lable on	request																



v2022.1

RADIAL TYPE: PORTFOLIO

LIFETIME ESTIMATION OF ALUMINUM ELECTROLYTIC CAPACITORS FROM JIANGHAI

To estimate the Lifetime of a non-solid Aluminum Electrolytic Capacitor from Jianghai, the following formulas can be utilized. The Lifetime depends mainly on the ambient temperature, the ripple current and, within certain limits, the operating voltage applied. Other parameters may also affect the Lifetime. Moreover, Lo can be interpreted in many different ways, which has a fundamental influence on the numerical result. Jianghai offers a high transparency by publishing the different typical definitions of Lifetimes in each datasheet. Lifetime estimations are approximations by nature. Please let JIANGHAI EUROPE confirm any result before using it. The formulas given here do not constitute part of a contract nor of a specification. The formulas do not cover additional aging effects of certain electrolytic systems or other chemical effects. Also the dimensions of the components may have an effect. Forced cooling or other additional cooling-methods have a strong impact on the Lifetime and are not covered by the formulas as defined. For the estimation and interpretation of Lifetime, a close collaboration with JIANGHAI EUROPE is strongly advised.

STRUCTUAL FORMULA

$$L = L_0 \cdot K_T \cdot K_R \cdot K_V$$

WHERE:

- L Total Lifetime
- L₀ Lifetime under Nominal Load at Upper
 Category Temperature (see catalogue)
- K₊ Temperature Factor
- K_D Ripple Current Factor
- K_v Voltage Factor

K₊ TEMPERATURE FACTOR

Aluminum Electrolytic Capacitors follow roughly the 10 K rule of Arrhenius. It is possible to estimate the Lifetime by rule of thumb: When the operational temperature is reduced by 10 K, the Lifetime will double. The formula for \mathbf{K}_{τ} in detail is:

$$K_T = 2^{\frac{T_0 - T_A}{10K}}$$

WHERE:

v2022.1

- T₀ Rated Temperature
- T, Ambient Temperature

K_∞ RIPPLE CURRENT FACTOR

To estimate the influence of ripple current on lifetime, Jianghai uses a safety factor K_i . Under certain conditions this value can be set to K_i =2, which is prolonging the lifetime. Please contact Jianghai Europe for details and approval.

$$K_R = K_i^{A\frac{\Delta T_0}{10K}}$$

WITH:

$$A = 1 - \left(\frac{I_A}{I_R}\right)^2$$

WHERE:

- I, Actual Rated Ripple Current
- I_R Ripple Current at Upper
 Category Temperature (databook value)
- ΔT_0 Core Temperature Rise of the capacitor (typically 3,5 ~ 5 K for T_0 = 105°C and 3,5 ~ 10K for T_0 = 85°C, see databook value)
- K, Basis, typically defined as

$$T_0 = 105^{\circ}C$$
 $I_A > I_R$: $K_i = 4$
 $I_A \le I_R$: $K_i = 2$
 $T_0 = 85^{\circ}C$ $K_i = 2$

Real

Remark: Safety Factor K_i may be set as K_i =2 under certain defined conditions. Please contact Jianghai Europe for approval.

K, VOLTAGE FACTOR

For Radial Electrolytic Capacitors, this part of the formula has no impact ($K_v = 1$). But for some bigger capacitors like Snap-In and Screw-Terminal types with rated voltages above 160V, the operating voltage will affect their Lifetime. It is expressed as follows:

FOR.

$$0.6 \le \frac{U_A}{U_B} \le 1$$

$$K_V = \left(\frac{U_A}{U_R}\right)^{-2.5}$$

WHERE:

- U_A Actual Operating Voltage
- U_p Rated Voltage

5 ||

FOR:

$$0 < \frac{U_A}{U_R} < 0.6$$

$$K_V = 3,59$$

FOR:

$$\frac{U_A}{U_R} > 1 \ not \ allowed$$

$$K_V = 1$$

FOR: Radial Capacitors or U_p ≤ 160V

$$K_V = 1$$

FREQUENCY CORRECTION FACTORS:

If the actual Ripple Currents are not given at the same frequency like I_n , correction factors need to be applied.

$$I_A = \sqrt{\left(\frac{I_{f1}}{F_{f1}}\right)^2 + \left(\frac{I_{f2}}{F_{f2}}\right)^2 + \dots \left(\frac{I_{fn}}{F_{fn}}\right)^2}$$

JIANGHAI ELECTROLYTIC CAPACITOR LIFETIME ESTIMATION FORMULA (incl. Safety Factors):

$$L = L_0 \cdot 2^{\frac{T_0 - T_A}{10K}} \cdot K_i^{\left[1 - \left(\frac{I_A}{I_R}\right)^2\right] \cdot \frac{\Delta T_0}{10K}} \cdot \left(\frac{U_A}{U_R}\right)^{-n}$$

WITH TYPICAL VALUES:

$$T_0 = 105$$
°C $I_A > I_R : K_i = 4$
 $I_A \le I_R : K_i = 2$
 $T_0 = 85$ °C $K_i = 2$

 ΔT_0 = depending on the series: 3,5~10K, see databook value

$$0.6 \leq \frac{U_A}{U_R} \leq 1 \rightarrow n = 2.5$$

$$0 < \frac{U_A}{U_R} < 0.6 \rightarrow K_V = \left(\frac{U_A}{U_R}\right)^{-n} = 3.59$$

For U_p ≤ 160V, Radial and

$$\frac{U_A}{U_R} > 1 \to K_V = 1$$

v2022.1

HANDLING PRECAUTIONS FOR ALUMINUM ELECTROLYTIC CAPACITORS FROM JIANGHAI

WARNING

JIANGHAI is not liable for any extent of possible injuries or damages to persons or things, of any kind, caused by the improper application of and/or operating conditions harmful to electrolytic capacitors. Misapplications which may cause failures include, but are not limited to: ripple current or peak current or voltage above specification, operating voltage above surge voltage specified, temperature exposure outside the specified operating temperature range. Examples of harmful operating conditions comprise, but are not limited to: unusual storage or transport temperatures, excessive and/or rapid changes of ambient temperature or humidity, heavy mechanical shock or vibration, corrosive and abrasive particles in the ambient (cooling) air, conducting dust in the ambient (cooling) air, oil or water vapor or corrosive substances, explosive gas or dust, operation under extremely high or low ambient pressure conditions (below or above sea level), superimposed radio frequency voltages, radioactivity. In case of doubt about the impact of operating conditions on capacitor performance, please contact JIANGHAI.

PERSONAL SAFETY

Electrical or mechanical misapplication of electrolytic capacitors may be hazardous. Personal injury or property damage may result from explosion of a capacitor or from the expulsion of electrolyte due to mechanical disruption or the release of a safety vent of a capacitor. In case of injury or skin or eye exposure to electrolyte, immediately seek professional medical advice. Before using electrolytic capacitors in any application, please read these Handling Precautions, familiarizing thoroughly with the information contained herein. Please check before using any of our electrolytic capacitors if these components fulfill the requirements of your application and that warnings and instructions for use are followed.

WARRANTY

The information contained in this catalogue does not form part of any quotation or contract, is believed to be accurate, reliable and up to date. Quality data are based on the statistical evaluations of a large quantity of parts and do not constitute a guarantee in a legal sense. However, agreement on these specifications does mean that the customer may claim for replacement of individual defective capacitors within the terms of delivery. We will not assume any liability beyond the replacement of defective components. This applies in particular to any consequential damage caused by component failure. Furthermore it must be taken into consideration that the figures stated for lifetime, failure rates and outlier percentages refer to the average production status and are therefore to be understood as mean values (statistic expectations) for a large number of delivery lots of identical capacitors. These figures are based on application experience and data obtained from preceding tests under normal conditions, or - for purpose of accelerated aging – more severe conditions. JIANGHAI reserves the right to change these specifications without prior notice. Any application information given is advisory and does not form part of any specification. The products are not primarily designed for use in life support applications, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. JIANGHAI customers using or selling these products for use in such applications without prior written consent of JIANGHAI do so at their own risk and agree fully to indemnify JIANGHAI for any damage resulting from such improper use or sale. This version of the catalogue supersedes all previous versions. Latest versions of datasheets can be found on our homepage: www.jianghaieurope.com. For more details on precautions and guidelines for aluminum electrolytic capacitors, please refer to CENELEC Technical Report CLC/TR 50454:2008 E, "Guide for the application of aluminum electrolytic capacitors".

POLARITY

Electrolytic capacitors are polar and shall never be used with incorrect polarity, as there is a possible danger of shorting or destruction.

RATED VOLTAGE UR

The rated voltage is marked on the capacitor and defined in the datasheets as U_R . This voltage should never be exceeded and is the maximum peak voltage including any ripple voltages allowed to avoid a shortening of the lifetime or damage of the capacitor. When a ripple current is applied to the capacitor, the sum of the peak ripple voltage and bias DC voltage shall never exceed the rated voltage. It might be necessary to lower the maximum allowed bias DC voltage, when certain ripple currents are applied to the capacitor.

SURGE VOLTAGE

Maximum voltage, which may be applied to the capacitor for short periods of time: max. 1000 cycles of 30 sec. per 6 min., max. 5 pulses per hour. Capacitance drift \pm 1-15% max.

REVERSE VOLTAGE

Reverse voltages or voltages < 0V are not allowed.

HANDLING PRECAUTIONS

RECOVERY VOLTAGE

Electric potential between the positive and negative terminal may exist as a result of dielectric absorption. Please take action that this load does not damage other devices or scare workers during the production process (sparks possible). If needed please discharge the capacitor through a $1k\Omega$ resistor.

TEMPERATURE RANGE

Use electrolytic capacitors only within the specified operating temperature range.

OVER-CURRENT

Currents exceeding the rated ripple currents should be avoided.

RIPPLE CURRENT/VOLTAGE

The combined value of DC voltage and peak AC voltage (due to ripple current) shall not exceed the rated voltage and shall never be < 0V. Use of aluminum electrolytic capacitors under ripple current with wide amplitudes is equivalent to rapid charge-discharge operation.

RAPID CHARGING/DISCHARGING

Rapid charging/discharging generates severe heat and gas may be emitted which may lead to explosion. Consult JIANGHAI about specially designed capacitors suitable for such kind of applications. Example: Servo Drive Application

BALANCING RESISTORS

Balancing resistors should be utilized if capacitors are used in serial connection. Please choose low-tolerance resistors to limit voltage drift.

CHARGE-DISCHARGE PROOF

JIANGHAI capacitors are charge-discharge proof, which means that 10° switching cycles will cause capacitance reduction of less than 10%.

LIFETIME

There are many different lifetime definitions known without any true standard definition. Take special care when capacitors are compared that the capacitors fulfill the needed requirements. JIANGHAI publishes all conditions to be as transparent as possible. In the case of lifetime tests with additional ripple currents, the bias DC voltage must be reduced, so that the sum of bias DC voltage and the peak of the ripple voltage does not exceed the Rated Voltage $U_{\rm R}$.

Load life: Period of time, during which the technical parameters of all capacitors stay within the given limits. JIANGHAI defines this without allowing for outliers.

Useful life: Defined like load life, but with a lager range of parameter change.

Endurance test: IEC 60384-4 defines the acceptable drift criteria of electrical parameters after the endurance tests (continuous voltage test).

Shelf Life: Definition of time with acceptable drift of capacitor parameters after storage at upper category temperature without load.

VIBRATION AND MECHANICAL STRESS

Capacitors are sensitive to vibration and mechanical forces applied on the leads. Do not use capacitors, which have been dropped onto a rigid surface.

INSULATION

If any defect of the sleeve is visible, the component should not be used – the same holds for any kind of visible damage. A capacitor should be electrically isolated from the following parts: aluminum case, cathode lead wire, anode lead wire and circuit pattern, and auxiliary terminal of snap-in type. The sleeve is not recognized as an isolator and therefore the standard capacitor should not be used in a place where insulation function is needed. Please contact JIANGHAI if a higher grade of insulation is required.

ENVIRONMENTAL CONDITIONS

Avoid direct contact with water, salt solution, oil, dewing conditions. Halogens generally, especially fumigation treatment with bromides and flame retardant agents containing halogens must be avoided. Avoid exposing to direct sunshine, ozone, ultraviolet rays and x-ray radiation. Air Pressure: Max. 150kPa, min. 8kPa. For usage >2000m altitude above sea level current deratings might be necessary. No heavy air pressure changes are allowed. Do not use or store in an environment containing any hazardous gas (e.g., hydrogen sulphide, sulphurous acid, nitrous acid, chlorine, ammonia, bromine, methyl bromide, other halogens) or acidic or alkaline solutions.

STORAGE

Temperature 5 to 35°C, relative humidity below 75%. Electrolytic capacitors may accumulate charge naturally during storage. In this case discharge through a 1kOhm resistor before use (Recovery voltage). Leakage current may be increased after long storage time. In this case the capacitor should be subjected to the rated voltage treatment through a 1kOhm resistor before use for 1 hour, then it should be discharged through a resistor of about 1 Ohm/Volt. Storage times above 1 year should be avoided or rated voltage treatment may be necessary. In accordance to IEC 60384-4 electrolytic capacitors are subject to a reforming process before acceptance testing. Rated voltage is applied via a series resistance ($1000: U_R \le 100VDC, 1kQ: U_R > 100VDC$).

SOLDERING

Soldering conditions (temperature, times) should be within specified conditions, especially for SMD components. Avoid high soldering temperatures as this may reduce lifetime or damage the capacitor. Do never dip the capacitor body into molten solder. Flux should not be adhered to the capacitor's body but only to its terminals. For details and different methods please contact us.

GLUEING, CLEANING AND COATING

Do not use fixing agents or cleaning substances containing halogens. Do not use coating and moulding components that completely seal the capacitor from the environment. Also, never use solvents containing: halogenated hydrocarbons, alkali, petroleum, trichloroethylene/-ethane, xylene, acetones, trichlorotrifluoroethane, tetrachloroethylene, methylenechloride, chloroform, acetates, ketones, esters, chlorides and bromides.

MOUNTING

Other devices, which are mounted near the capacitor, should not touch the capacitor. Additional heat coming from other components near the capacitor may reduce the lifetime of the capacitor. Do never bend or twist the capacitor after soldering to avoid stress on the leads. Radial capacitors are not protected against mechanical forces on the leads. Forces on the pins might damage the capacitor. No printed circuit board tracks are allowed between the lead pads of the capacitor. Screw Terminal capacitors should only be mounted in an upright position.

TRANSPORT

Avoid fumigation and spraying insecticides (especially with bromides) in the import or export procedures which can cause corrosion. This applies also to the finished devices.

MAINTENANCE

Periodical inspection should be carried out for the capacitor: visual inspection to check pressure relief open or leakage of electrolyte, electrical characteristics as leakage current, capacitance, and dissipation factor.

ELECTROLYTE AND SEPARATOR PAPER

Electrolyte and separator paper used in aluminum capacitors may be flammable. Also, electrolyte is electrically conductive. Therefore, in case electrolyte gets in contact with PC board it may cause corrosion of circuit pattern or cause short circuit between patterns, and may lead to smoke generation or ignition in worst case.

CAUTION DURING USE OF CAPACITORS

Do not touch the terminals of capacitors. Keep the capacitor free from conductive solution, such as acids, alkali and so on. Ensure that the operating environment of the equipment into which the capacitor has been built is within the specified conditions mentioned in the catalogue or specification sheets.

SAFETY VENT

The safety vent needs some free space to open properly. Allow for free headroom of at least 2mm for diameter ≤16mm, more than 3mm for diameter 18-35mm, more than 5mm for case diameter 40mm and larger.

EMERGENCY ACTIONS

When the pressure relief vent is open and some gas blows out from the capacitor, please turn the main switch of the equipment off or pull out the plug from the power outlet immediately. During safety vent operation, extremely hot gas (>100°C) may blow out of the capacitors. Do not stand close to the capacitors. In case of eye contact, rinse the open eye(s) with clean water immediately. In case of ingestion, gargle with water immediately, do not swallow. Do not touch electrolyte but wash skin with soap and water in case of skin contact.

DEFINITION OF ELECTRICAL PARAMETERS

Separate documents as application notes, equivalent circuit diagrams and so on are available on request.

PACKAGING

Please refer to the data book for details. Further information is available on request.

DISPOSAL

Scrapped capacitors are classified as scrapped metal. For disposal they are handled as controllable industrial waste because of the nature of the contents (electrolyte). Most of the material is aluminum and cannot be completely burned.

Jianghai Europe Electronic Components GmbH VERSION 10/2021

